Curvature of Hessian manifolds
نویسندگان
چکیده
منابع مشابه
integral inequalities for submanifolds of hessian manifolds with constant hessian sectional curvature
in this paper, we obtain two intrinsic integral inequalities of hessian manifolds.
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملThe curvature of a Hessian metric
In this paper, inspired by P.M.H. Wilson’s paper on sectional curvatures of Kähler moduli [31], we concentrate on the case where f is a homogeneous polynomial (also called a “form”) of degree d at least 2. Following Okonek and van de Ven [23], Wilson considers the “index cone,” the open subset where the Hessian matrix of f is Lorentzian (that is, of signature (1, ∗)) and f is positive. He restr...
متن کاملThe Pontryagin Forms of Hessian Manifolds
We show that Hessian manifolds of dimensions 4 and above must have vanishing Pontryagin forms. This gives a topological obstruction to the existence of Hessian metrics. We find an additional explicit curvature identity for Hessian 4-manifolds. By contrast, we show that all analytic Riemannian 2-manifolds are Hessian.
متن کاملStrictly Kähler-Berwald manifolds with constant holomorphic sectional curvature
In this paper, the authors prove that a strictly Kähler-Berwald manifold with nonzero constant holomorphic sectional curvature must be a Kähler manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2014
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2014.01.001